

Applying Model-Based Reasoning to the FDIR of the Command
& Data Handling Subsystem of the International Space Station

Peter Robinson1 Mark Shirley2 Daryl Fletcher3 Rick Alena2 Dan Duncavage4 Charles Lee3

NASA Ames Research Center2/Johnson Space Center4

QSS Group Inc1, SAIC3

Moffett Field, CA. 94035

probinson@mail.arc.nasa.gov

Keywords model-based reasoning, testability, FDIR,
fault detection, hardware and software faults, Interna-
tional Space Station, command and data handling, caution
and warning, rate monotonic scheduling

Abstract
 All of the International Space Station (ISS) systems
which require computer control depend upon the
hardware and software of the Command and Data
Handling System (C&DH) system, currently a network
of over 30 386-class computers called Multi-
plexor/Dimultiplexors (MDMs)[18]. The Caution and
Warning System (C&W)[7], a set of software tasks
that runs on the MDMs, is responsible for detecting,
classifying, and reporting errors in all ISS subsystems
including the C&DH. Fault Detection, Isolation and
Recovery (FDIR) of these errors is typically handled
with a combination of automatic and human effort.
 We are developing an Advanced Diagnostic System
(ADS) to augment the C&W system with decision
support tools to aid in root cause analysis as well as
resolve differing human and machine C&DH state
estimates. These tools which draw from sources in
model-based reasoning[16,29], will improve the speed
and accuracy of flight controllers by reducing the un-
certainty in C&DH state estimation, allowing for a
more complete assessment of risk. We have run tests
with ISS telemetry and focus on those C&W events
which relate to the C&DH system itself. This paper
describes our initial results and subsequent plans.

1. Introduction
The Aerospace Safety Advisory Panel (AVSP)[3]

identified the C&DH system as a critical system that
needs continued attention. Even as the ISS complexity
increases, budget pressures may require scaling back
of the ISS ground support team and the ISS crew[2].
There is a strong need for easy-to-configure automa-
tion tools which assist the ground and flight teams to
assess complex situations, suggest recovery options[9]
and track the response of automated C&DH FDIR.
 The paper begins by presenting an overview of the
hardware and software of the C&DH system. At ISS
assembly complete, the C&DH system will be made
up of over 60 MDMs executing 1 million lines of Ada
flight software tasks. Each MDM executes the Ada
tasks according to a rate monotonic schedule (RMS)[5].
We highlight the challenging nature of C&DH system
FDIR, including high rates of false-positive C&W
events[3] and unexplained hardware and software
anomalies referred to in Problem Report and Correc-
tive Action (PRACA) documents[1,8]. (Figs. 1,2,3,4)
 We use structural dependency models of the
C&DH system made up of a network of hard-
ware/software paths of components which govern both
nominal and off-nominal modes of behavior. The
components consist of MDMs, their internal boards,
buses and software structure. This information is de-
rived from hardware schematics[18], standard out
(STDOUT)[25], C&W fault trees[19], as well as soft-
ware source code.

The models are utilized by both symptom- and
simulation-based tools. The symptom-based tool
TEAMS[17,29], from the testability community, over-

mailto:probinson@mail.arc.nasa.go

lays functional signal/test component relationships
over structural-dependency models. The test points are
evaluated from observations. Diagnosis is determined
by tracing back from all active test points to those
components which contain the test point signals. The
simulation-based tool L2[15,16], from the
model-based diagnosis community, propagates “pieces
of stuff” (material, electricity, heat, information)
through the structural dependency networks in order to
compare predictions of C&DH behavior against ISS
C&DH observations. Diagnosis is determined by trac-
ing back to components whose predictions lead to in-
consistencies with observations (conflict generation).
Through a process called candidate generation, L2
derives a diagnosis by toggling the nominal and
off-nominal modes of the failed components in order
to achieve a consistent set of mode assignments to all
components which accounts for all observations (and
commands).

By integrating TEAMS and L2, we can close the
FDIR loop. TEAMS and L2 provide state estimation
capabilities (at different levels of abstraction), and
have the ability to continue to perform state estimation
in the face of partial data dropouts. L2 also provides
regulation capabilities. TEAMS addresses issues of
scale-up and speed of diagnosis for the whole C&DH
system. L2 can automatically select the active paths of
the structural dependency models either through com-
mands or inferring reconfiguration. L2 provides capa-
bilities to explain its reasoning processes.
 We present two scenarios derived from Guidance
Navigation and Control (GNC) C&DH events which
occurred on days 88-90 2002. The first scenario dem-
onstrates a model-based method of determining
whether two C&W events have a common root cause.
We map each C&W event to the subset of the ISS
hardware components for which it is responsible. We
employ set covering methods over these subsets to
determine potential root causes for C&W events. If the
data from two C&W events can be accounted for by a
single component of the model, we assume the C&W
events have a common root cause. (Figs 5,6,7,8).

A second scenario addresses the issue that C&W
events for MDM failure can be ascribed to both
hardware and software causes. We provide a method to
trace information dependencies over time between
Ada tasks and the global shared memory called the

Current Value Table (CVT) (Fig 10.). We accomplish
this by extending the methods of model-based diagno-
sis (MBD)[15,16] to model software components
[11,12,13] as well as hardware components. We model
the timing of Ada tasks and their I/O with the CVT.
This allows us to shadow the execution of the Ada
tasks in order to track software errors. When Ada task
exceptions occur, we will provide software depend-
ency information to determine which portions of the
CVT to focus in order to discriminate between com-
peting root causes of exceptions.(Figs. 10,11,12)

We conclude by comparing our approach to other
tools (CRANS[14], PEM cells[21]) and address issues
of future work.

2.Command & Data Handling System (C&DH)
 The function of the C&DH system is to provide
hardware and software to support command and con-
trol of the ISS, services for flight and ground opera-
tions, and science payloads. This is achieved through
a three tiered network of computers(MDMs) all run-
ning Ada tasks and interconnected by MIL-STD
1553B data buses (Fig. 1). The Tier 1 MDMs run
Command and Control Software (CCS) that controls
system-wide functions such as ISS mode. The Tier 2
MDMs are responsible for subsystem level functions
for Electrical Power Systems (EPS), Guidance
Navigation and Control (GNC), Environmental Con-
trol and Life Support Systems (ECLSS), Thermal
Control System (TCS) as well as others. Tier 3 MDMs
interact with the multitude of sensors and effectors
onboard the ISS.

Figure 1. The C&DH system consists of a three-tiered
hierarchy of networked computers and buses.[18]

 Each MDM consists of a power supply and an
IOCU (Input/Output Control Unit) card that contains
the 386 SX processor and the 1553 Bus Interface
Adaptor (BIA) to connect the MDM to upper tier
MDMs. The MDM can also be configured with up to
five I/O cards and five 1553 Serial-Parallel-Digital
(SPD) network cards. Each SPD card connects the
MDM to lower tier MDMs via the SPD card. For
example, a GNC MDM (Fig. 2) has an IOCU with a
BIA connected to upper tier bus CB_GNC_1 as well as
five SPD 1553 cards. Each SPD card is attached to two
buses. For example, SPD1 card attaches to buses
LB_GNC_2 and LB_TS_1.

Figure 2. The GNC MDM model of an MDM from a
PCS display[28]. The MDM has a power supply card,
an IOCU card, and 5 SPD network cards.

When an MDM is booted-up and its software is loaded,
a cyclic scheduler is invoked. The cyclic scheduler is
responsible for executing Ada tasks according to a rate
monotonic schedule (RMS)[5]. The C&DH system
has an internal rate of 80 Hz, with all software running
at 10Hz, 1Hz and 0.1 Hz rates. If the task rates are
multiples of each other a feasible RMS schedule can
more easily be achieved. The Ada tasks communi-
cate via a global shared memory called the current
value table (CVT) (Fig. 3). The propagation of com-
mands and data through the network is accomplished
through a set of realtime Ada routines for I/O and 1553
communication where the commands and data cycli-
cally read from and write to the CVT, in service of
MDM specific User Application Software (UAS).
 When Ada tasks fail, exceptions are thrown by
tasks and caught by exception handlers within the dy-
namic scope of the task (Fig. 4). These exception han-
dlers respond to a variety of known error conditions
including invalid data for sensors, bus and command
data parameters, task overruns and watchdog timer

timeouts. When failures occur, the MDMs usually
transition to the diagnostic state and are taken offline.
Frequently occurring Ada task exceptions are
addressed with counters for classes of exceptions.
For those classes, transition to diagnostic mode occurs
only when an accumulated threshold is crossed

Figure 3. Ada tasks communicate via a global shared
memory called the current value table (CVT)[27].

 Ada tasks can fail for several reasons. The loss of
hardware components that software routines depend
upon can cause an Ada task to wait until it times out.
Overruns can cause it to experience constraint viola-
tion and divide-by-zero errors. Violating any of the
assumptions of rate monotonic scheduling (RMS) can
also cause exceptions. Liu and Leyland[5] identify the
assumptions: (1) the requests for all tasks are peri-
odic, (2) tasks are independent and non-interacting, (3)
execution time for each task is constant, (4) each task
must be complete before the next request for it occurs
and (5) task switching is instantaneous. Finally, the
sheer complexity of the C&DH software is at the root
for additional Ada task failures. According to [6], “It is
not possible to achieve 100% test coverage [of the
software] due to the enormous number of permutations
of states in a computer program execution, versus the
time it would take to exercise all those possible states.
Also there is often a large indeterminate number of
environmental variables, too many to completely simu-
late”.
 We will focus on classes of unexplained C&DH
MDM failures (PRACAs[8] #2593, #3031, #3019[1]).
These problem reports state: "There is insufficient data
to determine the root cause"[1], due to unknown
hardware/software interactions. The integration of
model-based diagnosis methods with techniques from
program slicing[11,12,13] provides an approach to
combining hardware and software FDIR within a sin-

gle approach. We plan for our system to shadow the
execution of the Ada tasks to extend software V &V to
the runtime, operational environment (through the use
of framecount and checkpoint data). When an excep-
tion handler is invoked, we can provide software de-
pendency information to determine the root cause and
determine which portions of the CVT to focus on to
discriminate between competing fault hypotheses (e.g.
Fig. 10). We will rely upon the use of the MDM Ap-
plication Development Environment (MADE)[20] to
the emulate of suspect Ada tasks and provided insight
into their anomalous behavior.

F

3

s
a
C
t
e
7
l
l
s
e
c
b
p
b
o
w
c

string of dependent failures. Often, mission controllers
turn off false-positive C&Ws; however, the Aerospace
Safety Advisory Panel has stated[3]: “Avoid the need
to inhibit C&W alerts by countering the root causes of
false alarms.”

4. Approach
 We seek to address these two classes of problem:
unexplained C&DH PRACAs and unacceptable
false-positive C&W rates by the use of dependency
tracking tools which can trace C&W events to root
causes through the hardware/software paths governing
their operation. We base our approach on the C&DH
ground handbook which instructs flight controllers to
respond to MDM failures by dumping a set of onboard
logs and buffers to augment the standard cyclical te-
lemetry [10]. We rely on the Diagnostic Data Server
(DDS) [4] to parse these logs and temporally organize
the ISS events from cyclic telemetry, logs files and
1553 bus messages. We also base our approach on the
C&DH flight handbook[31], which instructs the astro-
nauts to respond to a partial loss of an MDM by ad-
dressing each C&W in the order it was received. Our
tools will help organize C&W events by root cause.

|

l

Cyclic_Task
 begin
 task_processing;
 exception when
 constraint_error | numeric_error
 program_error| storage_error |
 task_error =>
 Call Ada Exception Handler;
 when others =>
 Call Default Exception Handler;
 end;
 … Call task_overrun_handler
end Cyclic_Task
igure 4. Template of realtime cyclic Ada task [27]

. Caution and Warning (C&W) System
The primary fault detection system of the C&DH

ystem is the C&W system[7]. This system executes at
 10 Hz rate, cyclically evaluating each of 10,000
&W events which characterize the ISS state. For

he C&DH system two important classes of C&W
vents are MDM failure and bus failure events (Figs.
,8). Each C&W event is defined by a fault tree whose
ogic reflects a complex and/or description of
ow-level ISS telemetry parameters as well as the re-
ults of intermediate trees. The fault trees of the C&W
vents have a limited notion of context, which has
aused the C&W system to experience an unaccepta-
ly high false-positive rate. C&W events are false
ositive for several reasons including when: 1) sensors
in in/out of nominal due to incorrect limits, or 2)
perations are performed such as depressurization
hich cause sensors to leaves nominal range, or 3)

ascading failures occur such as power supply failure

5. Are Two C&W Events Related?
 To determine whether any set of C&W events have
a common root cause, we derive a diagnosis with all
the data related to the set of C&W events of interest. If
the minimal diagnosis is a single fault, we assume the
set of C&W events has a single root cause. This ac-
complished by first pre-computing for each C&W
event the subset of components of the C&DH compo-
nents for which it is responsible. Once the components
sets are defined for all C&W events of interest, we
utilize set covering methods over all the C&W event
component sets. A non-nil intersection is a necessary
but insufficient condition for determining if C&W
events are related. This due to the fact that the inter-
section of the component sets for each C&W, is a static
analysis of the topologies, without the introduction of
command and sensor information from parameters in
the C&W fault trees as well as logs dumped to MCC
for analysis which could further reduce intersection.

We explore this process with two C&W events re-
lated to the GNC MDM system which took place on
days 88 and 90 in 2002. As it turns out, C&Ws 5392

eading to a string of dependent failures. Often,

and 5014 are not related; i.e. the minimal diagnosis is
double fault. We briefly introduce the portions of the
C&DH/GNC topology necessary for this example and
then step through the process of determining de-
pendencies between these C&W events.

Figure 5. Telemetry parameters used by Event I (CW#
5392) and Event II (CW# 5014).

The GNC MDM has five network cards (Figs. 2,6
(Event II)). One of these network cards, SPD1, is
connected to the LB_GNC_2 bus as the bus controller
(BC) (Fig 6 (Event I)). The BC can send/receive in-
formation via A/B redundant channels to a set of
three remote terminals (RTs) connected to GNC de-
vices called the reaction gimbal (RGS), the control
momentum gyro (CMG) and the global position sys-
tem (GPS).

Figure 6. The components involved in Events I and
EII have an intersection at network card SPD1.

 At 11:00 pm on day 88 of 2002, the 1553 error
count for RT CMG on bus LB_GNC_2 exceeded its
limits. (Fig. 5, Event I). Automatic bus FDIR took over
and activated the A/B channel switch to determine if
switching channels would stop the RT CMG 1553 er-
ror messages. It did not, and soon the A/B channel
switch counter exceeded its limits continually trying to
address RT CMG. This caused Event I: C&W event
5392 (LB_GNC_2 failed) to be raised. Over a day

passed, then the network card SPD3 fails at the same
time as a watchdog timer (WDT) error occurs. These
events cause the GNC MDM to go into diagnostic
mode, which causes the framecount to stop, which
causes Event II: C&W event 5014 (GNC MDM failed)
to be raised.

CW:5014 GNC MDM
1
0

1 GNC SPD3 Error
0

1 GNC Watchdog Timer 0

GEvent II NC framecount ok
~ok

CW:5392 lb GNC 2 1
0

>=2 lb GNC 2 a/b ch sw ct
<2

Figure 7. C&W Event 5014: GNC MDM Fail: “If the
frame count has not changed for four seconds and I/O
is ok then GNC MDM is failed”. [19]

>=2 lb GNC 2 rt cmg 1553err <2

Event I
088:23:28:51.0 090:07:2430.50

Figure 8. C&W Event 5392: LB GNC2 Bus Fail: “If
any of the three bus RTs are failed then LB_GNC_2
bus is failed” [19]

 We develop models of an MDM and bus required to
build the structural dependency models. The MDM
model is developed from the connectivity information
in the GNC MDM definition (Fig. 2,6 (Event II)) as
well as the fault tree for C&W event 5014(Fig. 7).
We represent both working and ~working models of
the MDM. The working model states that the MDM is
working provided that the framecount is changing
(dframecount) and that all of its internal components

are nominal: ((dframecount <> 0) ^ SPD1 ^ SPD3) .
The ~working model is derived using De Morgan’s
laws from the working model: (dframecount = 0) v
~SPD1 v ~SPD3). For the sake of this example, we
have only included in the GNC the components needed
for our scenario (Fig 9).
 The bus model is developed from the bus connec-
tivity information of the LB_GNC_2 bus (Fig. 6,
Event I) and the fault tree for C&W event 5392 (Fig.
8). The fault tree in Fig. 8 states that the bus is failed if
any of its RTs (CMG, RGA and GPS) or the BC is
failed. (see large text in Fig. 8). The ~working model
of the bus components is developed by reducing the
fault tree propositions to prime implicant form through
the use of a 4-variable Karnaugh map: ~working:
(~SPD1 v ~RGA v ~CMG v ~GPS). The working
model is derived by use of De Morgan’s laws: work-
ing: (SPD1 ^ RGA ^ CMG ^ GPS). We integrate of
the MDM and bus models in a structural dependency
model in Figure 9. Infusing this model with telemetry
and dump log information allows us to determine de-
pendencies between C&W events 5392 and 5014.

Figure 9. The structural dependency models of com-
ponents covered by CW events 5014 and 5392.

6. MDM Simulation HW/SW Using Framecount
 A closer look at the data from days 88 and 90 reveals
that when the SPD1 network card failed, a software
watchdog timer (WDT) tripped as well.. At present, the
root cause of the WDT has not been determined [1].
By modeling the software execution and modification
of memory (CVT) we hope to determine root causes
for such errors. To perform tracing through software
requires the capability to simulate the software proc-
esses and record their justifications. For example, in
Figure 10., we show with the bold lines information
dependencies between software tasks and shared
memory elements of the CVT. Initially CVT(1,7) and
CVT(2,6) are read by Ada Task1 at some framecount
which writes out intermediate data product CVT(2,5).

Ada Taskn reads this data product at a later framecount
to produce CVT (3,2). In this manner, CVT(3,2) de-
pends on CVT(1,7) and CVT(2,6).
 The second scenario demonstrates this capability
with a simulation which propagates a message a
through an MDM (from BIA to SPD) by utilizing a
CVT memory element. We have developed hardware
and software components for this simulation and will
highlight the software task component in this paper..

 Current Value Table (CVT) Ada Task 1 Ada Task 2
 (1,7)

(2,6)
(2,5)

Figure 10. Memory location (3,1) depends upon mem-
ory locations (1,7) and (1,6) through location (2,5).

The scenario begins with the power supply status

nominal (#1) and power-in nominal (#2). The power
supply is turned on (#3) to provide power to the rest of
the MDM including the processor (IOCU= BIA +
DRAM) as well the SPD cards. The BIA is initialized
as an RT (#4,5) followed by the SPD card which is
reset and reinitialized (#6,7). When the MDM frame-
count starts (#8), Ada tasks execute when the fra-
mecount is within their nominal range (#9,13). The
synchronized execution of a set of Ada tasks controls
the propagation of information through the MDM. In
the scenario, the information enters the MDM via the
BIA input (from an upper tier computer or from MCC)
(#9). A 1553 Ada task is scheduled to transfer the BIA
value to its CVT. The CVT is given a write command
(#11), with value to be stored on the write line. Once
the memory latches, the Ada task stops executing and
the value is available on CVT read line (#12). Two
increments of the framecount later, and then another
1553 Ada task is executed which copies the CVT read
data to SPD (#13) ready for propagation to a lower tier
MDM.
 We simulate the software at a high-level, not mod-
eling the internals of the software but only the timing

 Ada Task n Ada Task i

 (3,2)

as well as the inputs and outputs of the software. We
assume that any output of a software routine could be
dependent on all inputs. To define the timing, dura-
tion of the Ada task and elements of the CVT used by
these tasks, requires an analysis of the Ada source code
and its documentation[22,23,24,26,27].

 Ada Task Component
 framecount
 CVTin

 t#1

Figure 11. An MDM simulation to propagate data
from BIA_in to SPD_out in 3 framecount increments.

 Each Ada task is designed to execute on particular
framecounts. The framecount is an integer number
from 0 to 99, where each integer increment is 0.1 sec.
This is how ISS ensures that Ada tasks do not
read/write the CVT at the same time. We introduce
metric time into MBR models to model the timed
propagation of information through the C&DH system
by augmenting traditional components from
model-based reasoning with temporal preconditions.
(Fig 12.). This allows us to explicity control the
propagation of information in the structural
dependency models. Instead of components
propagating their data product at every tick of the
diagnosis/simulation engine cycle, propagation only
occurs when the framecount is within nominal range
as defined by the Ada task component (i.e. start_time <
framecount < stop_time).

CVTout

if (start_time < framecount < stop_time)
then {CVTout = f(CVTin)}

n
SPD 1553 Output to

Lower Tier
value

Figure 12. Each Ada task executes only when frame-
count is within time window: [start_time stop_time].

7. Discussion
 We have presented our preliminary work towards
defining an integrated hardware/software FDIR system
to augment the ISS C&W system. We have addressed
unexplained C&DH PRACAs as well as false-positive
C&W rates, two serious issues in ISS data handling.
We find that though ISS acknowledges that the state
space of the software is too large to test at design
time[6], no solution is provided for runtime software
V&V. Advances in model-based diagnosis (MBD) to
include software components [11,12,13] provides the
roadmap for integrated hardware and software FDIR.
Traditionally it is easier to model hardware compo-
nents, because the physics underlying these models has
been developed over hundreds of years (Kirchoff’s
laws, Bernoulli’s equations), while paradigms for
modeling software components is still being developed
today (UML).
 Scale-up challenges using simulation methods of
MBD led us to develop synergistic strategies to utilize
both the TEAMS and L2 tools. TEAMS [17,29,30,32]
has been used for diagnosis of aerospace vehicles
including portions the ISS and C&DH, while
L2[15,16] has flown on the Deep Space 1 spacecraft
with its single string 1553 bus network. Still, due to
their coarse abstractions of the underlying structural
dependency models, in the future we will utilize de-
tailed simulations using the ISS software emulator
MADE [23].
 This work is related to CRANS (Configurable
Realtime Analysis System)[14] dependency tracking,
real-time monitoring, mission control tool. In CRANS,
structural topologies of the system are encoded in
logical form similar to fault tress. It is useful for

else {};

o_value

#12
#13

value CVT Read Value
no_value

#11 value
CVT Write Value

no_value

write
no_cmd

vaBIA Input from
Upper Tier

lue
no_value

ok
not_ok

on

off

Power Supply
Status

CVT Memory Cmd

#9
#10

#8 MDM framecount

BIA Cmd

Power Supply
Power_in

Power Supply Cmd

power
no_power

RT
BC

no_cmd

ok

not_ok
BIA Post Status

reset SPD
1553 Card

reinit I/O SPD
1553 Card

high

low

low
high

TIME t t + 3

#2
#3

#4
#5
#6
#7

determining upstream causes and downstream effects
of failued ORUs (orbital replacement units). But
CRANS is difficult to configure, does not directly tie
in with the C&W system and does not capture software
dependencies. Future work could address automatic
methods to configure CRANS from domain
knowlegde in our tools. We also relate to Program
Execution Montitor (PEM) cells [21] , as a “specialist
software module to assist with detailed analysis” for
state eastimation and recovery options as well as
provide structural dependency models which can be
used to generate PEM cells. Both [21] and [30] share
out goal of augmenting the C&W system. The
challengeall of these approaches face including the
approach we have presented today, is to ensure that the
systems can easily be configured for the current ISS
stage[9].

5. Reference
[1] McCabe, J.J., PRACA #3019 GNC-2 MDM Transi-
tioned To Diagnostics - Unexplained Anomaly
[2] Holloway, T., Waddell, B., ISS Program Manager's
Recommend for Program Operating Plan 2002, Pres-
entation to HQ 21 June 2002
[3] NASA Aerospace Safety Advisory Panel, Annual
Reports for 2001,2
[4] Fletcher, D. P., Alena, R. A Scalable, Out-of-Band
Diagnostics Architecture for International Space Sta-
tion Systems Support, IEEE Aero 2003
[5] Liu,C.L., Layland J.L. Scheduling Algorithms for
Multi-Programming in a Hard Real-Time ACM Vol 20,
1, 1973, pp. 46-61
[6] NASA-GB-1740.13-96 Software V&V Challenges
[7] Owens, D. , Dempsey, R .Caution and Warning
Systems Brief NASA JSC DF25 CDH 06/02
[8] Problem Reports and Correction Action
http://iss-wwww.jsc.nasa.gov/ss/issapt/praca
[9] O’Hagan, Brian ISS ODIN(C&DH) mission con-
troller – personal communication 9/02
[10] JSC-48516-E1&E2 ISS Ground Handbook All
Expedition Flights MOD, Sept 2000
[11] Hamscher, W.C., R. Davis. Diagnosing Circuits
with State: An inherently unconstrained problem
AAAI-84
[12] Mayer, W., et al. Observations and Results gained

from the JADE Project. DX '02
[13]Wotawa, F. On the Relationship Between
Model-based Debugging and Program Slicing, Artifi-
cial Intelligence Journal 135 (2002), pp125-143
[14] CRANS Users Manual – NASA JSC MOD
[15]Williams, B., Nayak P.P., A Model-based ap-
proach to reactive self-configuring systems. AAAI95.
[16] Kurien, J. , Nayak. P.P Back to the Future for
Consistency-based Trajectory Tracking. AAAI-97
[17] Deb, S., Domagala, C.,Ghosal, S.,Patterson-Hine A.,
Alena , R. Remote Diagnosis of the International Space Sta-
tion utilizing Telemetry Data SPIE April 2001
[18] D684-10500-04B CDH ADD Vols. 1-4.
[19] C&W Fault Trees: http://hsi.jsc.nasa.gov/Cwad/
[20] D684-11379-01 MADE Design Document 3/02
[21] Wang, L. Cockpit Automation Architecture: Ad-
vanced Automation with Advanced Caution and Warn-
ing NASA JSC/ER2 Jan 03
[22] S684-11032 ISS Software Requirements: R2,,
Command and Control (C&C) MDM (CSCI) 11/01
[23]D684-11106-01 ISS Command and Control Soft-
ware , Software User’s Manual R2 10/01
[24] D684-10056-01K ISS Prime Contractor Software
Standards and Procedures Specification 12/00
[25] D684-10177-01F ISS Mission Build Facility Stan-
dard Output Definition
[26]NAS15-10000 Software Rqmtss Spec for the MDM
Boot and Diagnostics Firmware of C&DH
[27]D684-11111-01 ISS Command and Control Soft-
ware, Software Top Level Design Document R3
[28] JSC 28721 User’s Guide for the Portable Com-
puter System (PCS) ISS MOD May 2001
[29] Deb S., Pattipati K., Raghavan V., Shakeri M.,
Shrestha R. Multi-Signal Flow Graphs: A Novel Ap-
proach for System Testability Analysis and Fault
Diagnosis IEEE AES Systems Magazine, May 1995
[30] Aaseng G., Cavanaugh K.,Deb S. An Intelligent
Remote Monitoring Solution for the ISS. IEEE 2003
[31] 3.101 Malfunction Methodology (Caution/6A –
ALL/FIN 1/MULTI) NASA JSC MOD
[32] Deb S., Mathur A., Willet P, Pattipati K.
De-centralized Real-time Monitoring and Diagnosis
Proc. IEEE SMC Conference 1998

http://iss-wwww.jsc.nasa.gov/ss/issapt/praca

